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Expression dynamics of a cellular metabolic network
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Toward the goal of understanding system properties of biological networks, we investigate the
global and local regulation of gene expression in the Saccharomyces cerevisiae metabolic network.
Our results demonstrate predominance of local gene regulation in metabolism. Metabolic genes
display significant coexpression on distances smaller than the average network distance, a behavior
supported by the distribution of transcription factor binding sites in the metabolic network and
genome context associations. Positive gene coexpression decreases monotonically with distance in
the network, while negative coexpression is strongest at intermediate network distances. We show
that basic topological motifs of the metabolic network exhibit statistically significant differences in
coexpression behavior.
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Introduction

Recent studies of general topological organization of metabolic
networks have provided valuable insights into the functional
properties of these systems (Jeong et al, 2000; Ravasz et al,
2002). The topological characteristics, however, provide only
a static description of the biological networks. Functions of
cellular networks are highly regulated in a temporal fashion at
a number of levels, including transcriptional regulation. The
expression dynamics of protein–protein and protein–DNA
interaction networks have been previously investigated and
small, but statistically significant, expression correlations
were found between network neighbors (Ge et al, 2001).
Earlier studies have analyzed coexpression in individual
metabolic pathways (Gerstein and Jansen, 2000; Hughes
et al, 2000; Karp et al, 2002; Pavlidis et al, 2002; Ihmels et al,
2003), identified highly coexpressed modules (Hanisch et al,
2002; Ihmels et al, 2003; Patil and Nielsen, 2005) and have
characterized coexpression properties of metabolic junctions
(Ihmels et al, 2003). In the present study, we demonstrate
several novel aspects of the expression dynamics in yeast
metabolic network. We also show that the observed patterns of
the mRNA coexpression are similar to the patterns of other
context-based associations between genes: phylogenetic pro-
files and chromosomal distance.

In our analysis we represent metabolism as a graphical
model, with nodes of the graph corresponding to genes
encoding metabolic enzymes, and edges to metabolic connec-
tions between corresponding enzymes (see Materials and

methods). We investigate how positive and negative correla-
tion of mRNA expression profiles depends on the metabolic
network distance, and determine the maximum distance at
which genes display statistically significant coexpression. At
the level of individual biochemical reactions, we examine
coexpression and functional association patterns of local
topological motifs of the metabolic network (Shen-Orr et al,
2002). Our results show that different motifs exhibit distinct
coexpression patterns, which may elucidate dynamic design
principles of metabolic networks.

Results and discussion

Global properties of gene coexpression

Our analysis uses Saccharomyces cerevisiae metabolic network
recently reconstructed by Forster et al (2003). In contrast to
currently available protein–protein interaction data, yeast
metabolic network has a substantially smaller error rate
compared to commonly available physical interaction data
(Mering et al, 2002; Spinzak et al, 2003). Using the established
metabolic connectivity between S. cerevisiae enzyme-encod-
ing genes, we investigate how the degree of gene coexpression
changes with the network distance. A similar question was
posed recently for adjacent genes in the protein–protein
physical interaction network (Ge et al, 2001; Jansen et al,
2002).

An intuitive expectation is that genes close in the metabolic
network would also be coexpressed. The dependency of mean
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expression distance (distance¼1�correlation coefficient, see
Materials and methods) on metabolic network distance is
shown in Figure 1A. Expression distance increases mono-
tonically with network distance, demonstrating that genes
closer to each other in metabolic network tend to have, on
average, higher level of coexpression. The extent of local
coexpression in the metabolic network can be characterized by
calculating the maximal network distance, at which one finds
genes that are, on average, significantly more coexpressed
than the rest of the metabolic genes. We find that mean
expression distance at network distances 1–3 is significantly
(Wilcoxon test Po10�3) lower than that of all other pairs,
making the radius of significant coexpression equal to 3
(Supplementary Figure 1), which is just below the network
diameter (3.7).

Local coregulation can also be illustrated by examining
distribution of transcription factor binding in the metabolic
network. Because genes sharing DNA binding transcription
factors are, generally, expected to be coregulated, the distribu-
tion of transcription factor binding cooccurrences in the
metabolic network should confirm the pattern observed for
coexpression. Indeed, we find (Figure 1D) that the fraction of
gene pairs binding a common transcription factor is highest in
the metabolically adjacent genes, and decreases with network
distance. Similar results were recently observed for E. coli
metabolic network (Spirin et al, 2003). It is also worthwhile to
note that both cobinding fraction and coexpression distance fall
off is somewhere between linear and exponential, as evidenced
by the semi-log scale plots (Supplementary Figures 2 and 3).

The expression distance dependency is shown separately for
gene pairs with positive and negative correlation of expression
profiles (Figure 1B and C). While expression distance of
positively coexpressed gene pairs monotonically increases
with metabolic network distance, there is no such simple
relationship in the case of negative coexpression. Negative

coexpression is strongest at intermediate distances (around 3)
and is relatively weak at short and long network distances.
In all cases, behavior of mean coexpression magnitude is
matched by the relative abundance of highly coexpressed pairs
at each network distance (Supplementary Figure 1). The
relationships between network distance and gene coexpres-
sion observed in the combined expression data set (see
Materials and methods) agree with the relationships in
individual data sets: Rosetta (Hughes et al, 2000), Brown
(Gasch et al, 2000) and Young (Causton et al, 2001) (see
Supplementary Figures 4–6).

Both coexpression and transcription factor binding site
cooccurrence reflect the degree of functional association
between metabolic genes. To generalize our results, we have
examined other functional association evidence based on the
genome context: physical clustering of genes on the chromo-
some (Overbeek et al, 1999) and gene cooccurrence in
phylogenetic profiles (Pellegrini et al, 1999) (see Materials
and methods). We find that associations based on both
cooccurrence in phylogenetic profiles (Figure 1E) and physical
clustering of genes on the chromosome (Figure 1F) also exhibit
the local property observed for gene coexpression, with the
same radius of significant association.

Coexpression in the metabolic network depends not only
on the network distance between genes, but also on the
characteristics of connecting metabolites. Analyzing the
dependency between the total number of enzyme pairs
connected by a given metabolite (metabolite enzyme pair
number) and mean expression of the connected pairs (see
Supplementary Figure 1), we find that increasing enzyme pair
number corresponds, on average, to weaker positive coex-
pression (Spearman rank r¼0.21, P¼4.7�10�5) and stronger
negative coexpression (r¼�0.14, P¼2.7�10�2). The details of
this analysis and of similar genome context association
dependencies are given in Supplementary information.

1 2 3 4 5 6

0.8

0.85

1 2 3 4 5 6

0.75

0.8

0.85

1 2 3 4 5 6

0.84

0.85

1 2 3 4 5 6
–8

–7

–6

–5

1 2 3 4 5 6
– 2.5

– 2

–1.5

–1

–0.5

1 2 3 4 5 6
0

0.02

0.04

F
ra

ct
io

n 
of

 c
ob

in
di

ng
pa

irs

M
ea

n 
lo

g 
10

(P
)

M
ea

n 
lo

g 
10

 (
P

)

M
ea

n 
ex

pr
es

si
on

di
st

an
ce

M
ea

n 
ex

pr
es

si
on

di
st

an
ce

M
ea

n 
ex

pr
es

si
on

di
st

an
ce

PositivePositive and negative
coexpression coexpression

Negative
coexpression

Network distance Network distance Network distance

Network distanceNetwork distanceNetwork distance

TF cobinding Clustering on the
Chromosome

Cooccurrence in
phylogenetic profiles

A B C

D E F

Figure 1 Coexpression and functional associations on the scale of the whole metabolic network. Mean expression distance is plotted as a function of the metabolic
network distance separating the metabolic gene pairs for (A) all metabolic gene pairs; (B) positively coexpressed pairs and (C) negatively coexpressed pairs. (D)
Fraction of metabolic gene pairs that share at least one transcription factor binding site in their promoter region as a function of metabolic network distance. (E) Mean
chromosome clustering gene pair association score dependency. (F) Mean phylogenetic profile cooccurrence association score dependency.
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It should be noted that our analysis examines coexpression
across a large number of conditions. As it has been recently
demonstrated (Patil and Nielsen, 2005), individual environ-
mental perturbations may affect sets of metabolic genes
connected by some of the common cofactors. Nevertheless,
our study shows that the overall coexpression is stronger for
genes connected by metabolites used in a small number of
reactions. In general, a decrease in the reaction number of
connecting metabolite increases linearity of the pathways
going through this node. Consequently, our results suggest
that positive coexpression and strong functional associations
dominate in linear parts of the network, while negative
coexpression is stronger in highly branched pathways.

Gene coexpression in metabolic motifs

To understand patterns of local regulation in the metabolic
network, we compare coexpression properties of elementary
topological motifs formed by adjacent enzymes in the
metabolite graph. Several studies have recently investigated
local regulatory motifs in bacteria and yeast (Lee et al, 2002;
Shen-Orr et al, 2002). These studies identified elementary
topological motifs that are significantly more abundant in real
biological networks than expected by chance. In contrast, we
analyze coexpression of all possible two-gene motifs and a
majority of three-gene substructures of the metabolite graph

(see Materials and methods). Mean expression distances of
these motifs are given in Supplementary Table 1. The same
analysis was repeated on each individual expression data set,
and the results are shown in Supplementary Tables 2–4. Below,
we examine behavior established by positive coexpression as
being predominant in magnitude and consistent between
different expression data sets (considering both positive and
negative coexpression results in the same motif ordering).

The ordering of irreversible two-gene motifs established by
positive coexpression is shown in Figure 2A. Functionally,
these motifs represent serial (M1), divergent (M2), convergent
(M3), parallel (M4) and cyclic (M5) topologies. Some of the
motif coexpression patterns are intuitive: for example, high
level of coexpression in the M1 motif representing sequential
genes in a pathway, or low level of coexpression in the M5
motif representing a futile cycle. A highly coexpressed M4
motif includes homologous enzymes frequently resulting from
gene duplication, which tend to be correlated in their
expression patterns (Wagner, 2002). Indeed, exclusion of
homologous gene pairs (see Materials and methods) affects
only the mean coexpression level of the M4 motif, reducing it
below the level of the M2 motif (see Supplementary Figure 7
and Supplementary Table 5).

The M2 and M3 motifs represent pairs of divergent and
convergent metabolic reactions correspondingly. The mean
level of positive coexpression of genes within the M2 motif is
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Figure 2 Coexpression in motifs of metabolite graph. (A) All irreversible metabolite graph motifs consisting of two genes (x and y) are analyzed using only positively
coexpressed gene pairs. The motifs are ordered according to the mean expression distance of gene pairs belonging to each motif. (B) Two three-gene motifs (M6 and
M7). Two distinct types of gene pairs within each motif are connected by dashed arrows. The pair types are ordered (from left to right) in the order of increasing mean
expression distance.
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significantly higher than within the M3 motif (Wilcoxon test
P¼3.4�10�3), implying that coregulation of divergent meta-
bolic pathways is generally stronger compared to convergent
pathways. This suggests that regulation of the metabolic
network emphasizes reactions in which one metabolic
precursor, such as a carbon source, is simultaneously used to
synthesize a variety of compounds required for biomass
growth.

In analyzing three-gene motifs, we compare coexpression
among different types of gene pairs within each motif. The M6
and M7 motifs (Figure 2B) represent three-gene extensions of
the two-gene M2 and M3 motifs, and their behavior reflects the
coexpression patterns established by the two-gene motifs. For
example, positive coexpression of the convergent (type 2) pair
in the M7 motif is significantly lower than that of the serial
(type 1) pair (P¼1.0�10�3), which can be explained by the
corresponding behavior of the M1 and M3 motifs. This result
supports earlier findings by Ihmels et al (2003).

In contrast to the M7 motif, the pattern of positive
coexpression for the three-gene M6 motif differs from the
behavior observed in two-gene motifs. Here, enzymes
consuming the same metabolite exhibit, on average, stronger
coexpression with each other than with the enzyme producing
the metabolite. Although the observed pattern for the M6 motif
coexpression differs from the conclusions of the divergent
junction analysis reported by Ihmels et al (2003), no statistical
significance has been established in either case (Wilcoxon test
P¼0.33 for positively coexpressed pairs, P¼0.54 for positive
and negative coexpression, no P-value was reported by Ihmels
et al). Overall, coexpression patterns of both M6 and M7 motifs
support predominance of coregulation in divergent versus
convergent branches demonstrated in the analysis of the two-
gene motifs.

The coexpression behavior of local topological motifs is
matched by the strength of genome context associations
between genes. Genome context association of the metabolite
graph motifs (clustering of genes on the chromosome, and
gene cooccurrence in phylogenetic profiles) is given in
Supplementary Tables 6 and 7. Since genome context scores
rely on ortholog identities, these analyses exclude motifs
formed by homologous gene pairs (see Materials and
methods).

The ordering of irreversible two-gene motifs (M1–M5)
established by the genome context associations is identical
to the order established by positive coexpression, with the
exception of M1–M2 switch in the phylogenetic profile
association ordering (Supplementary Figure 7). Significantly
larger association of genes in divergent (M2) compared to
convergent (M3) motif is also supported by the difference
in the mean chromosome clustering scores (Wilcoxon test
P¼4.6�10�19) and phylogenetic profile cooccurrence (Wil-
coxon test P¼3.8�10�30). Similarly, the relative coexpression
behavior of the three-gene M6 and M7 motifs is matched by the
relationship of genome context associations.

Conclusion

The presented results reveal interesting and statistically
significant patterns of coregulation in the metabolic network.

We find that regulation of metabolic genes is local and extends,
generally, to distances smaller than the mean network
distance. Such regulation implies that genes close in the
metabolic network are usually coexpressed together, possibly
to optimize local metabolic fluxes (Zaslaver et al, 2004).
Positive coexpression is strongest among adjacent genes and
decreases monotonically with network distance. In contrast,
negative coexpression is most prominent at intermediate
distances. Functional associations based on the genome
context analysis exhibit the same local property observed in
the case of positive coexpression. These results suggest that
regulation of the metabolic network establishes a number of
local, positively coexpressed regions that may exhibit some
degree of negative coexpression between each other. Further-
more, we find that positive coexpression and functional
associations are strongest in the linear parts of metabolism,
while negative coexpression is more pronounced in highly
branched regions.

Our analysis of the elementary topological motifs illustrates
that coexpression in divergent branches is significantly
stronger than that observed in convergent branches. This
pattern suggests emphasis on coregulation of biomass synth-
esis or degradation from common metabolic precursors.

Good agreement between the mRNA coexpression and
genome context associations suggests that the observed
patterns of metabolic regulation are reflected in genome
evolution and affect the location of genes on the chromo-
somes. In future studies, it will be important to confirm our
findings using the metabolic networks of other organisms. It
would also be interesting to perform similar analysis of other
cellular networks, for example signaling and protein–protein
interaction networks.

Materials and methods

Metabolic dependency graph and separation
between genes

Metabolism was represented in a form of a connectivity graph. The
nodes of the graph correspond to metabolic genes, and edges
correspond to connections established by metabolic reactions.
Metabolic genes X and Yare considered connected if and only if there
exists a metabolite that is present among the list of either reactants or
products of reactions catalyzed by enzymes encoded by both X and Y.

The metabolic connectivity graph is used to calculate network
distance (or metabolic separation) between genes. We define a pair of
directly connected metabolic genes as being separated by distance 1. In
general, we define network distance between the genes X and Yas the
length of the shortest path from X to Y on the metabolic connectivity
graph. A hand-curated metabolic network model of S. cerevisiae
(Forster et al, 2003) was used to construct a comprehensive metabolic
connectivity graph. While any metabolite can be used to deduce gene
connectivity, the relationships established by the common cofactors,
such as ATP, are not likely to connect genes with similar metabolic
functions. In compiling a global metabolic connectivity graph, we
consider a subset of metabolites, which excludes most highly
connected metabolic species. An exclusion threshold was determined
based on the connectivity of the resulting gene dependency graph
(Supplementary Figure 1). A total of 14 most highly connected
metabolites (ATP, ADP, AMP, CO2, CoA, glutamate, H, NAD, NADH,
NADP, NADPH, NH3, orthophosphate, pyrophosphate) and their
mitochondrial and external analogs were excluded. The general trends
described in the paper are not sensitive to the precise choice of the
metabolite set; however, the actual values change when more or less
metabolites are considered. For detailed analysis, see Supplementary
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information. Genes encoding enzymes that are part of known
complexes, according to MIPS complex database (http://mips.gsf.de)
and SGD (http://www.yeastgenome.org/), were masked as un-
assigned enzymes, so that their expression profiles would not be
included in any of the analysis (36 enzyme-encoding genes in total).

Distances between gene expression profiles

We used three data sets as sources of gene expression information. The
Rosetta’s ‘compendium’ data set (Hughes et al, 2000) measures
expression profiles of over 6200 S. cerevisiae open reading frames
(ORFs) across 287 deletion strains and 13 chemical conditions. In
addition, the data set contains 63 negative control measurements
comparing two independent cultures of the same strain. These were
used to establish individual error models for each ORF, providing not
only the raw intensity and ratio measurement values for each
experimental data point, but also a P-value gauging the significance
of change in expression level. The ratio data were used for all analysis.
We also used a data set from Brown’s group, containing 173
environmental perturbations (Gasch et al, 2000), and a data set from
Young’s group with 34 conditions describing seven environmental
perturbation time courses (Causton et al, 2001). Log 10 intensity ratios
of each data set were normalized to have a mean of 0 and a variance of
1. Separate time courses contained in these data sets were first
normalized individually and then combined. Supplementary Table 8
shows the relative variability of metabolic enzyme-encoding genes in
each data set.

The expression distance measure between ORFs X and Y is then
taken to be 1�S|(px,py)|, where px and py are expression profile vectors
of X and Y, and S corresponds to Spearman rank correlation coefficient,
calculated according to Press et al (2002). Combined expression profile
vectors are formed by concatenation of log 10 ratio values from three
data sets. Conditions missing experimental value for at least one of the
genes were omitted in calculating the expression distance of a given
gene pair. Genes that were missing expression values for more than
25% of conditions were not considered in the analysis.

Transcription factor binding

Information on transcription factor binding to the metabolic gene
promoter sites was taken from Lee et al (2002). A P-value threshold of
0.001 was used to select transcription factor binding occurrences.

Clustering of genes on the chromosome

To assess genome context association based on the physical clustering
of genes on the chromosome, we relied on gene order statistics.
Chromosome clustering association score between genes x and y was
calculated as SðxjyÞ ¼

Q
g2G P dgðx; yÞ

� �
; where G is a set of genomes

and P(dg(x, y)) is the probability of observing gene order distance
dg(x, y) between genes x and y in a genome g, calculated based on the
chromosome sizes of organism under the null hypothesis that genes
are randomly ordered across the chromosomes. The scores were
calculated using a set of 105 bacterial and three eukaryotic genomes.
Orthology mapping was established using best bidirectional hits from
KEGG SSDB (Itoh et al, 2004).

Cooccurrence in phylogenetic profiles

Phylogenetic profile cooccurrence association (Pellegrini et al, 1999)
was assessed using hypergeometric probability, as described by
Bowers et al (2004). The orthology data set was constructed based
on best bidirectional BLASTP hits against NCBI NR protein data set.
The calculation was limited to organisms containing orthologs for at
least 1% of S. cerevisiae genes.

Metabolic motifs

The elementary topological motifs of the metabolite graph were
classified in terms of the expression properties of the genes involved.

The elementary node structures were enumerated, and sets of genes
that were connected in the appropriate topology were extracted for
each structure. It is possible for one gene to be included in multiple
occurrences of the same motif; in other words, we counted any
substructure with the correct topology as an occurrence. Motif
instances formed around top 14 most connected metabolites, as well
as their mitochondrial and external forms, were not included in the
analysis. Mean expression distances of different types of gene pairs
were compared using the Wilcoxon rank test (Wilcoxon, 1945).

In generating homolog-filtered data, a pair of metabolic genes was
excluded from the analysis if the BLAST score comparing the two
nucleotide sequences was below an E-value of 10�3.

Supplementary information

Supplementary information is available at the Molecular Systems
Biologywebsite(www.nature.com/msb);http://arep.med.harvard.edu/
kharchenko/metabolic_expression/supplements.html
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